If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+7x-96=0
a = 9; b = 7; c = -96;
Δ = b2-4ac
Δ = 72-4·9·(-96)
Δ = 3505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{3505}}{2*9}=\frac{-7-\sqrt{3505}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{3505}}{2*9}=\frac{-7+\sqrt{3505}}{18} $
| x+2x-5=-11 | | 0.8x+1.7=0.6x-0.1 | | x^2+7x-96=0 | | 0.2x-3=(-0.3x+1) | | 123+1/2x=180 | | 5x+5=75, | | 36^4-25x^2+4=0 | | 7(5b+6)=53 | | 139+1/3x=180 | | 3/16(x+1)-5/12(x-4)=2/5(x-6)+5/58 | | 0.3x+137.7=180 | | 5(x-4)=13 | | 16x2-8x+7=0 | | 6a=4H+46=94 | | 3(n-4)+4(n-5)=5(n+2)+16 | | 6x–7=5+2x | | /6x–7=5+2x | | 7x–(x+8)=9x+5 | | |3x-4|=|-5x+1| | | 1.5x-x=150 | | |3x-4|=|5x+1| | | 4x³-32x²+23x+121=0 | | 4x-(x+x)=x | | (-5x+54)+(9x+24)=90 | | 13x+5=28x | | 9y=7=70 | | 2+3x-2=9-2 | | (-5(8)+47)=x | | 5-2x=4x+11 | | 104/44-46+x=324/1 | | 4h+3.5=3h+2 | | 5x+8-3(x+1)=6x+8 |